It the wastes are cffetively devtroyed. Our rescarch will study the coapled |
blogeochesnical processes that diceate the rate of TCE cometabolism in contuminted
aquifers first at the Idaho National Lubocatory and then at Patucah or the Savannah
River Site, where natueal atenustion of TCE s occutring. We will use flow-through in
it resctoes to investigate the rate of methimutrophie co-metabolism of TCE and the
cotpling of the respansible biological processes with the dissolved methane flux and

L groundwater fow velocity, We will use new approaches (e.g stable solope proting,

| enzyme activity probes, real-time reverse ranseriptase polymerase cham reaction,
proteoniics) 1o ussay the TCE co-metabolic res, und iterpeet these rates in the
context of enzyme activity, gene expression, and cellular mactivation related to

The ficld site for our rescurch s the TCE-contummnated aquifer al Test Arca North
(Fig. 1) a1 1he Mabe National Laboratory where monitored mstural sttenmation of TCE
has been accepted a5 a remedintion strategy. Methunotrophs snd mathanogens exist in
the aquifer (Fig. 2) (Erwin et a). 2005, Newby et al. 2004) and the methanotrophs
apparcatly contribute to the co-metabolism of TCE (Lee et al i revision)
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attenuation, und thereby refine such models while assessing the contribution of T S P T e Y A N e YD e i A s e el more e ° q .
microbial refative to other natural attenuation processes, This rescarch will strengthen extended period with fow rates of | m/s and 0.1 ms. Subsequently, the FTISR will be - A Detection of methanotroph pl’OtGII’]S
our ahility to forecast the viability of MNA it DOE and other sites that fire recovered and the methanotroph and gencral macrobial community charactenistics in '
contaminated with chiorinated Bydeocabons. the water and basalt will be evaluated (Fig. 3). Follow-on lab experiments with the ki g 4 e : S
= colonized basalt wall allow us to determine the relationship between TCE co- . | 2 -
metabolism rates amd the commumnity parameters under the different abiotic conditions. ‘
These data will also contribute to model development for monitored naturl - £ | R ame: 20 Mg
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Introduction . : i
Our objectives are to: 1) determine the controls on TCE co-metabolism rates by e, FY — 3
quantifying the coupled biogeochemistry (e.g., methane production and consumption) " ‘
and hydrology (e.g., rate of fluid movement in primary flow paths) using in situ . (UL |.l L Lal il ol

mesoscale reactors and 2) derive the enzyme activities of cells that are performing TCE
co-metabolism in order to determine the relationship between the expression levels of
key genes related to TCE co-metabolism, the presence of a broader array of proteins,
and to the actual TCE transformation rates.
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Using our approach we expect to obtain an improved conceptual model of natural
attenuation at DOE sites and refine site-specific computational models of natural
attenuation. We also expect to determine how the molecular characteristics of cells
performing the TCE co-metabolism are coupled to the hydrological conditions and the
methane flux in which the cells exist.

Figure 3. Diagram showing (six) FTISR reactors submerged in the
groundwater (center; right). FTISR are connected in a string and suspended
from land surface by a steel cable. Each reactor is 6.3 cm (internal diameter)
x 120 cm long with 3700 ¢cm3 volume. Groundwater flow rate through each
reactor is pneumatically controlled from the surface through “U” bends
(left). Analytical methods and modeling approaches are shown around the
FTISR diagram.

SMMO protein-A alpha chain; % coverage: 57.8, peptides: 47.
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Data from these studies will be used to address the
modeling objectives:

Determine which kinetic model(s) are appropriate for
describing TCE cometabolism in a field-scale model.

Determine how to parameterize such a model using data
that can be measured using field- or lab-based methods.
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=, Preliminary results and plans
e 3 The FTISR have been designed and a prototype is being constructed. Deployment of the completed FTISR assembly (Fig. 3) is References
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Figure 1. Location of TAN-35, the research well to be used in this
investigation along with published data on the hydraulic conductivity and /.é?’\,lx
porosity determined by radar tomography (see Wylie et al. 2002 and Knoll ¢ 0 -
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and Lane, 1997). The high permeability zone is noted by red arrow. Nb;.th Wind
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